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Linearity and time-scale invariance of
the creep function in living cells
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We report here the creep function measured in three cell types, after a variety of interventions,
and over three time decades (from 3ms to 3.2 s). In each case the response conformed to
a power law, implying that no distinct molecular relaxation times or time constants could
characterize the response. These results add to a growing body of evidence that stands in
contrast to widely used viscoelastic models featuring at most a few time constants. We show
instead that the ability of the matrix to deform is time-scale invariant and characterized by
only one parameter: the power law exponent that controls the transition between solid-like
and liquid-like behaviour. Moreover, we validate linearity by comparison of measurements in
the time and frequency domains.
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1. INTRODUCTION

Cell mechanics has been studied using a variety of tech-
niques over the past 50 years, among which are atomic
force microscopy (Wu et al. 1998), cell indentation
(Koay et al. 2003), magnetocytometry (Butler & Kelly
1998; Crick & Hughes 1950; Karcher et al. 2003; Laurent
et al. 2002a; Wang et al. 1993), micropipette aspiration
(Chien & Sung 1984; Evans & Yeung 1989; Yeung &
Evans 1989), micro plates (Thoumine & Ott 1997),
optical tweezers (Laurent et al. 2002b) and magnetic
tweezers (Bausch et al. 1998, 1999; Ziemann et al. 1994).
Based on such observations, cell rheology has usually
been described using viscoelastic models characterized
by a small number of distinct relaxation times. Com-
monly, those relaxation times have been interpreted in
terms of viscosity and elasticity of cortical (Evans &
Yeung 1989; Karcher et al. 2003; Laurent et al. 2002a;
Yeung & Evans 1989) and/or cytoplasmic structures
(Bausch et al. 1998, 1999; Butler & Kelly 1998; Chien
& Sung 1984; Crick & Hughes 1950; Evans & Yeung
1989; Karcher et al. 2003; Koay et al. 2003; Laurent
et al. 2002a,b; Thoumine & Ott 1997; Wang et al. 1993;
Wu et al. 1998; Yeung & Evans 1989; Ziemann et al.
1994). These models predict that the creep function (i.e.
the ongoing deformation in response to a step stress)
should exhibit two or three distinct regimes (Findley
et al. 1976): an initial instantaneous elasticity followed
by an exponential approach to a steady state, leading
finally to a viscous flow at longer times.

The dynamic responses reported here add to a grow-
ing body of evidence that stands in contrast to those
predictions (Lau et al. 2003; Yamada et al. 2000; Yanai
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et al. 2004). We have measured the creep function over
three decades in time (from 3ms to 3.2 s, a range
substantially wider than those previously reported),
in three different cell types, and with a variety of
experimental interventions. In every case a power law
response prevailed, implying that within the cell body,
relaxations at all time scales were present simultane-
ously; no distinct relaxation time stood out, and no
distinct molecular relaxation time or time constant
could characterize the response. Of course, models with
a multitude of distinct relaxation time scales cannot
be ruled out, but we address here the alternative
hypothesis that another type of process might account
for these observations.

2. MATERIALS AND METHODS

2.1. Probing cell mechanics

The complex elastic modulus and the creep function
of human airway smooth muscle (HASM) cells, human
fetal lung (HFL) fibroblasts and rat airway smooth
muscle (RASM) cells were measured using an optical
magnetic twisting cytometer (OMTC) (Fabry et al.
2001, 2003). Briefly, ferrimagnetic beads (4.2 µm in
diameter) were incubated on cells for 20min at 37 ◦C.
Beads had been coated with a peptide containing the
sequence RGD (Arg-Gly-Asp) allowing them to attach
specifically to integrin receptors and were used to probe
CSK mechanics deep in the cell interior (Fabry et al.
2001, 2003; Hu et al. 2003). A pair of magnetizing
coils and a pair of twisting coils were mounted on
the stage of an inverted microscope. The beads were
first magnetized horizontally by a magnetic field pulse
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(∼0.1T for 0.1ms) using the magnetizing coils (fig-
ure 1a). A vertical magnetic field H applied by the
twisting coils induced a mechanical torque on each bead
and caused both a rotation and a lateral displacement
of the beads (Mijailovich et al. 2002). The mechanical
torque T per bead volume was T = cH cos θ, where c
equals 2.1PaGauss−1 and θ is the bead’s rotation. In
any given cell well, the individual displacements of ∼100
beads on ∼100 cells were recorded simultaneously from
CCD camera images using an intensity-weighted centre-
of-mass algorithm. The accuracy in the bead position
was 10 nm; the exposure time was 0.1ms. Two kinds
of forcing were applied: sinusoidal oscillations and step
torques.

2.2. Measuring the complex elastic modulus

Sinusoidal forcing was used to measure a storage mod-
ulus g′(f) and a loss modulus g′′(f) over four decades
in frequency f (from 0.1Hz to 1 kHz). This complex
elastic modulus of the cell was defined by g(f) =
T̃ (f)/d̃(f), where T̃ is the Fourier transform of the
mechanical torque per bead volume (Pa s) and d̃ the
Fourier transform of the resulting bead displacements
(nm s); g(f) = g′(f) + ig′′(f). This elastic modulus has
dimensions of Panm−1 and could be transformed to the
conventional complex elastic modulus G(f) (with units
of Pa), using a geometric factor α; G(f) = αg(f). The
geometric factor α has been evaluated using a finite-
element model of cell deformation (Mijailovich et al.
2002), and depends mainly on the cell height and on
the degree of bead embedding. Assuming 10% of the
bead diameter embedded in a cell 5 µm high sets α to
6.8 µm. It is thus possible using OMTC measurements
to evaluate the conventional complex elastic modulus.

2.3. Measuring the creep function

A step torque was used to measure the creep function.
Assuming system linearity (as established experimen-
tally below), the Boltzmann superposition principle
gives the strain ε(t) measured during a creep test at
time t (Findley et al. 1976) as

ε(t) =
∫ t

0

J(t − ξ)
∂σ(ξ)

∂ξ
dξ,

where σ(t) is the applied stress. The creep function
J(t) describes the dependence of strain upon stress
history. In our experiments, we defined a related creep
function as j(t) = d(t)/T0 with d(t) being the lateral
bead displacement and T0 being the applied torque per
unit bead volume. This creep function has dimensions
of nm Pa−1 and can be transformed to the conventional
creep function J(t) (with units of Pa−1) by the same
geometric factor α through the relationship J(t) =
j(t)/α. This geometric factor need serve only as a
rough approximation however, because it cancels out in
the scaling procedure described below, which is model-
independent.

To measure the creep function, a constant magnetic
field of 20 Gauss (T0 = 42Pa) was applied for 3.2 s
causing the beads to rotate and translate, followed by

a recovery period of 9.6 s (T0 = 0Pa) causing a partial
return of beads to their initial positions (figure 1b).
To ensure a horizontal magnetization of the beads
for the following cycle, the beads were re-magnetized
1.5 s before applying each torque step. This 12.8 s cycle
was repeated 10 times for every measurement of the
creep function. We analysed the last five cycles of
this sequence in order to have cycles with similar
deformation history. Heterodyning was used to probe
small times by triggering the first image of each cycle
at different times (figure 1b).

Because the torque decreases as the bead rotates, the
applied torque was nearly, but not perfectly, constant
over the course of the creep measurement. Mijailovich
et al. (2002) have used a finite element analysis to com-
pute the relation between the bead displacement and
its rotation. For 90% of the beads, the torque decreases
by less than 3% and was thus considered constant.

2.4. Methodological limitations

Limitations and artifacts associated with magnetic bead
twisting have been reported in detail elsewhere (Fabry
et al. 2003; Mijailovich et al. 2002; Puig-De-Morales
et al. 2004). Among these limitations are that the
interaction of the magnetic microbead with the cell
induces local remodelling events that alter the structure
that is being probed, the geometry of the bead–cell
interaction is also not controlled, and a length scale α
(described above) must be invoked in order to convert
raw data into a proper elastic modulus.

These limitations are counterbalanced in many appli-
cations by the unique capabilities of the approach.
Principal strengths include the fact that the bead can
apply a mechanical load to the cell body in the physi-
ologic range of stress (from below 1 Pa to over 100Pa);
these loads are transmitted to the cell body via specific
receptor-ligand systems selectable by the bead coating
(Puig-De-Morales et al. 2004). Dynamic responses can
be measured at frequencies as high as 1 kHz, and even
at the highest frequencies studied, inertia does not come
into play and the viscous loads associated with the
supernatant are smaller than the loads associated with
the cell by several orders of magnitude (Fabry et al.
2001, 2003). Many beads can be tracked simultane-
ously using OMTC and data from hundreds or even
thousands of cells can be collected with high fidelity in
a relatively short time. Importantly, cells probed with
this technology display mechanical responsiveness that
is consistent with physiologic responses measured at the
tissue and organ level (An et al. 2002; Hubmayr et al.
1996). Moreover, dynamic moduli measured with this
approach are consistent with measurements in the same
cells made with independent methods such as atomic
force microspcopy (Alcaraz et al. 2003).

3. RESULTS AND DISCUSSION

3.1. Power law behaviour

We first measured the creep function under baseline
conditions. Figure 1b shows median values of bead
displacement versus time on HASM cells for five cycles.
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Figure 1. Lateral bead displacement versus time for step changes in applied torque (median ± standard error) on HASM cells.
(a) The magnetic field causes both a rotation and a displacement of the bead. (b) Median values of displacement (n = 903
beads) and torque versus time. (c) The five cycles are superposed. The shape of the curve is similar to that reported by
others (Bausch et al. 1998, 1999; Ziemann et al. 1994). (d) Displacement on a log–log scale. Best fit by a Burgers viscoelastic
model (dashed line) and power law (solid line; power law exponent 0.178). Burgers model (which has four free parameters)
show a clear departure between data and fit at small times. These two models make very different predictions outside
the measurement range. The small discrepancy between data and power law fit at small time is consistent with the small
Newtonian viscosity µ (see text).

Because no systematic trend was noticed from cycle to
cycle, we superposed the five cycles into one (figure 1c).
On a log–log scale (figure 1d) the displacement of
beads over three time decades increased according to
a weak power law (d(t) = 293t0.178) with a correlation
coefficient r2 of 0.992. The creep function corresponds
to this same curve divided by the applied torque
T0. Importantly, the power law responses persisted on
a bead-by-bead basis; thus the multiplicity of time
scales associated with power law behaviour cannot be
attributable to population averages that pool together
data sampled from many different individual cells or
different cell regions.

Cells were also challenged with histamine (a con-
tractile agonist), N6,2-O-dibutyryladenosine 3,5-cyclic
monophosphate (DBcAMP, a relaxing agonist) and

cytochalasin D (cytoD, causing the disruption of actin
filaments). In each case, creep functions (figure 2)
conformed to power law behaviour. The four curves
were well-fitted by jc = Ac(t/t0)xc−1 (model 1), with
t0 = 1 s and where the subscript c stands for each
of the challenges; r2 was equal to 0.995 (Table 1).
Histamine caused the creep function to decrease, i.e.
the stiffness increased and the power law exponent fell
slightly. In contrast, ablating baseline contractile tone
with DBcAMP caused j(t) to increase, i.e. the stiffness
decreased and the power law exponent increased. When
actin filaments were disrupted with cytochalasin D, j(t)
increased even more and the exponent increased further.
The changes in the power law exponent, and in the
prefactor Ac were statistically significant (using a z-test,
p < 0.001).

J. R. Soc. Interface (2004)
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Table 1. Comparison between model 1 and model 2 on HASM cells. Model 1 corresponds to independent power laws
(jc(t) = Ac(t/t0)

xc−1 with t0 = 1 s); model 2 has a common intersection (jc(t) = J0(t/τ0)
xc−1, equation (3.2)). SS: sum of

squared residuals. The values in parentheses are given to compare the two models. Values are median ± standard deviation.

Model 1 Model 2

xbaseline 1.209 ± 0.003 1.198 ± 0.002
xhistamine 1.180 ± 0.003 1.188 ± 0.002
xDBcAMP 1.219 ± 0.003 1.217 ± 0.002
xCytoD 1.223 ± 0.003 1.227 ± 0.002
Abaseline (nmPa−1) 2.712 ± 0.008 (2.716)
Ahistamine (nm Pa−1) 1.991 ± 0.006 (1.989)
ADbcAMP (nmPa−1) 5.035 ± 0.015 (5.036)
ACytoD (nmPa−1) 6.772 ± 0.020 (6.770)
J0 (nm Pa−1) — 0.005 [0.003 − 0.008]
τ0 (s) — 1.3 × 10−14 [7.7 × 10−16 − 2 × 10−13]
r2 0.9953 0.9951
SS 0.8523 0.8958
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Figure 2. Median values (± standard error) of bead displace-
ment on HASM cells under baseline condition (�, n = 793
beads; power law exponent 0.198), and after 10 minutes
treatment with 10−4 M histamine (�, n = 1337 beads; power
law exponent 0.188); 15 minutes with 10−3 M DBcAMP (�,
n = 1385 beads; power law exponent 0.217) and 30 minutes
with 2 × 10−6 M cytoD (�, n = 713 beads; power law expo-
nent 0.227). The inset shows the creep function and the best
fit by model 2, defining a common intersection at small time.
The power law exponents above are given for model 2.

3.2. Linearity

We assessed linearity in two ways. First, we mea-
sured the displacement of beads at 1 s versus the
applied torque and observed a linear relation for torques
between 5Pa and 100Pa, implying linear mechanical
behaviour in that range (data not shown). In addition,
active stiffening or reinforcement responses of the cell
were not evident in the range of torques reported here.

Second, we evaluated the validity of the superposi-
tion principle by comparing measurements in the time
domain versus frequency domain on the same cells.
As reported previously (Fabry et al. 2001, 2003), the
storage modulus g′ was well fitted by a power law over
four frequency decades. The loss modulus g′′ followed a
power law with the same exponent as g′ at frequencies
below 30Hz and then asymptotically approached a

power law with a slope of 1, which is characteristic of a
Newtonian viscosity µ (with dimensions of Pa s nm−1).
The complex elastic modulus was well described by

gc(ω) =
G0

Γ(x)

(
iω
Φ0

)xc−1

+ iµω, (3.1)

with G0 and Φ0 being scale factors for stiffness and
frequency, Γ being the gamma function and ω = 2πf
(Table 2). The first term on the right-hand side of
(3.1), known as the structural damping law, describes
a relationship between the exponent of the power law
(x − 1) and the transition from Hookean solid-like (x =
1) to Newtonian liquid-like (x = 2) behaviour. The
formulation of (3.1) is essentially equivalent to that of
Fabry et al. (2001, 2003).

For linear materials, (3.1) describing the complex
modulus and (3.2) describing the creep function (see
below), comprise identical laws if G0 and Φ0 are iden-
tified as 1/J0 and 1/τ0 respectively (Findley et al.
1976). The agreement between the time-domain and
the frequency-domain data was very good (Table 2),
although the model for the creep function we used
did not include the small Newtonian viscosity. Indeed,
the data at small times fell by a small but systematic
amount below the fitting line (figures 1d and 2), which
was quantitatively consistent with the contribution of
this Newtonian viscous term. This follows from the
evaluation using Mittag–Leffler functions (Erdélyi et al.
1954) of j(t) = L−1[1/(sg(s))], where L−1 denotes the
inverse Laplace transform. The extrapolations to small
times (figure 2 inset) did not include this additive term.

It is not at all obvious a priori that measurements
of the creep function in the time domain versus mea-
surements of the complex modulus in the frequency
domain in living cells should be Laplace transform
pairs; either nonlinearities or active mechanotransduc-
tion phenomena might have broken the principle of
superposition. Data reported here establish insensitivity
of the creep function to the amplitude of the forc-
ing, and equivalence of measurements in the frequency
domain versus the time domain (Fabry et al. 2001,
2003). Taken together, these new data represent the

J. R. Soc. Interface (2004)
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Table 2. Comparison between the complex elastic modulus and the creep functions measured on the same population of
HASM cells (n > 700 beads). Values are median ± standard deviation.

Elastic modulus Creep function

xbaseline 1.23 ± 0.01 1.245 ± 0.005
xhistamine 1.19 ± 0.01 1.211 ± 0.008
xDBcAMP 1.28 ± 0.01 1.275 ± 0.008
J0 = 1/G0 (nmPa−1) 0.005 [0.002 − 0.012] 0.025 [0.006 − 0.106]
τ0 = 1/Φ0 (s) 2.3 × 10−12 [1 × 10−14 − 4 × 10−10] 1.2 × 10−13 [4 × 10−15 − 4 × 10−11]
r2 0.975 0.977

most comprehensive evidence to date establishing a
linear range of cell mechanical responses.

3.3. Reduction of variables

Extrapolation of the four creep functions appeared
to define a common intersection, or fixed point, at
very small time (inset of figure 2). The existence of a
fixed point would imply that differences in responses
among the various experimental interventions could be
accounted for by changes in the power law exponent
only. To verify the existence of a fixed point, we
analysed the data using a second model (model 2):

jc(t) = J0

(
t

τ0

)xc−1

, (3.2)

where J0 and τ0 are scale factors that are constant for
a given cell type. An analysis of variance F-test showed
that model 1, which has more free parameters, fit the
data significantly better. Nevertheless, models 1 and
2 gave essentially identical results (Table 1). We later
adopt model 2 which fit the data as well as model 1 and
did so with fewer parameters.

3.4. Universal scaling and the master curve

Creep function measurements performed on HFL
fibroblasts and RASM cells were also well-fitted by
(3.2), with r2 of 0.979 and 0.997 respectively. Mea-
surements were done under baseline conditions and
after challenge with several agonists. For each mea-
surement, we plotted the creep function j(t) at 1 s
(an arbitrary time) divided by the corresponding J0

versus the parameter x. Upon doing so, all the data
collapsed onto a master curve (figure 3), suggesting that
although J0 was cell-type specific, τ0 was invariant and
close to 10−14 s for the three cell types studied. This
relationship represents a universal master curve in that
a single parameter, x, defined the mechanical behaviour
for a variety of cytoskeletal interventions, for three time
decades, and for three different cell types.

Similar power law behaviour in the frequency domain
has been reported by Fabry et al. (2001, 2003) (HASM
cells, human bronchial epithelial cells, mouse embry-
onic carcinoma cells, mouse macrophages and human
neutrophils) using OMTC and Alcaraz et al. (2003)
(human alveolar and bronchial epithelial cells) using
atomic force microscopy. Power law behaviours have
also been reported recording spontaneous motion (Lau
et al. 2003; Yamada et al. 2000) and forced motion
(Yanai et al. 2004) of endogenous particles in the cells.

1.14 1.16 1.18 1.20 1.22 1.24
101

102

103

104

x

j(
1s

)/
J 0

Figure 3. Master curve showing normalized bead displace-
ment at 1 s versus x. HASM cells (black), HFL fibroblasts
(grey) and RASM cells (light grey) under baseline condition
(�), treatment with histamine (♦), DBcAMP (�), cytoD
(•) and 5-HT (�). The solid curve is the prediction from
equation (3.2) with τ0 = 10−14 s (n > 500 beads for each
treatment.)

These data, taken together with the data reported here,
suggest that power law behaviour may be a common
feature of cell mechanics.

3.5. Viscoelastic models

The response curve in figure 1c is consistent with data
reported by others (Bausch et al. 1998, 1999; Karcher
et al. 2003; Koay et al. 2003; Ziemann et al. 1994) but
extends those observations up to three time decades
(down to a few milliseconds). Figure 1d shows a fit of
our data with a viscoelastic Burgers model consisting of
a Kelvin model and a Maxwell model in series (Findley
et al. 1976) (essentially equivalent to that of Bausch
et al. (1998)). The difference between the fit of the
Burgers model and the fit of a power law is hardly
detectable when data span only a single time decade,
but over a wider time window the Burgers model is
clearly unable to account for the creep response despite
the fact that it has four free parameters (figure 1d).
Accordingly, what had been interpreted previously as
being an exponential response we show here to be a
power law response. It might be argued that these
data could be fit equally well by using a viscoelastic
model comprising roughly two relaxation times per time
decade, or, for our creep measurements, six free param-
eters in all (eight in the frequency domain). While this

J. R. Soc. Interface (2004)
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is true, such an interpretation requires assignment of
an ad hoc distribution of time constants and represents
nothing more than a different parametrization of the
data, albeit one requiring six free parameters (eight in
the frequency domain) instead of two.

3.6. Alternative hypotheses

In some circumstances, cells need to flow like a liquid
whereas in other circumstances cells have to maintain
their shape and thus behave as an elastic body. The
transition between liquid-like behaviour (x close to 2)
and solid-like behaviour (x close to 1) is often described
as a sol–gel transition, and gels near a critical gelation
point do exhibit a power law behaviour similar to the
one reported here (Winter & Mours 1997). As an alter-
native explanation, but one not mutually exclusive with
the notion of critical gelation (Segre et al. 2001), we
have suggested previously (Fabry et al. 2001, 2003) that
cell rheology might be considered in the context of soft
glassy materials (SGM). The theory of SGMs proposed
in Sollich (1998) is based on a power law distribution
of time constants and predicts rheological behaviour of
the kind reported here (equation (3.1)). The mechanical
properties of SGMs are determined principally by an
effective temperature, x, which appears in the power law
exponent and which Sollich interprets as the amount of
jostling (i.e. molecular noise or agitation) of structural
elements relative to the depth of energy wells, or cages,
in which such elements are trapped.

If we apply this interpretation to the data reported
here, then cell rheology could arise from cytoskeletal
elements agitated and re-arranged by mutual weak
interactions within their matrix. Agents that activate
the contractile apparatus cause x to decrease, and
the system moves toward the glass transition and a
more solid-like state. Relaxing agonists and agents that
disrupt the CSK cause x to increase, and the system
becomes more disordered and moves towards a fluid-
like state. The parameter J0 would then be the creep
function at the glass transition and the parameter
τ−1
0 would be the maximum rate at which cytoskeletal

elements rearrange.

4. CONCLUDING REMARKS

The two new results established here are comprehensive
evidence of linearity of system responses and time-scale
invariance of those responses. These results, which were
demonstrated in three types of adherent living cells and
after a variety of interventions, stand in contrast to
widely used viscoelastic models with one or even several
time constants. Although cell rheology shows power law
responses that are known to be characteristic of soft
glassy materials (Fabry et al. 2001, 2003), these features
by themselves are not sufficient to classify these cells as
soft glasses. As such, other phenomena that are consid-
ered to be the signature of glassy behaviour, especially
certain types of nonlinearities, aging phenomena and
the emergence of slow non-ergodic relaxation processes
close to the glass transition (Fielding et al. 2000; Sollich
1998), become of interest.

We thank S. An and D. Tschumperlin for providing RASM
cells and fibroblasts. This study was supported by HL 33009,
HL/AI 65960 and HL 59682.
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